Writing & Interpreting Expressions

Expression

a mathematical statement involving numbers, variables, & operators

$$19a + 4b - 18$$

Terms: 9a, 4b, -18 Variables: a, b Coefficients: 9, 4 Constants - 18

Expressions :
verbal (words)
& algebraic (math)

Operation	Words	Examples
Addition	the sum of, added to, plus, more than, increased by, total, altogether, and	 A number increased by 2 The sum of <i>n</i> and 2 <i>n</i> + 2
Subtraction	less than, minus, subtracted from, the difference of, take away, taken from, reduced by	 The difference of a number and 2 2 less than a number n-2
Multiplication	times, multiplied by, the product of, percent of	1. The product of 0.6 and a number 2. 60% of a number 3. 0.6n
Division	divided by, division of, quotient of, divided into, ratio of,	1. The quotient of a number and 5 2. A number divided by 5 3. $n \div 5$ or $\frac{n}{5}$

Interpret

explain the meaning in context

13. Yolanda is buying supplies for school. She buys n packages of pencils at \$1.40 per package and m pads of paper at \$1.20 each. What does each term in the expression 1.4n + 1.2m represent? What does the entire expression represent?

1.4n → "total cost of pencils" "cost of n peakings of pennis"
1.2m → "total cost of paper" "cost of m paoks of paper"
1.4n+1.2m → "total cost of school supplies"

Solving Equations

Equation

a mathematical statement that two expressions are equal

To solve:

find the value of the variable by performing inverse operations

SADMEP · use opposite operations in (everse PEMDAS order

7.
$$150 + 31 = 61$$

 $-31 + 31$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 + 31 = 61$
 $150 +$

9.
$$\frac{x}{6} + \frac{1}{4} = 15$$

 $\frac{x}{6} + \frac{1}{4} = 15$
 $\frac{x}{4} = \frac{15}{4}$
 $\frac{x}{4} = \frac{15}{4}$

Literal Equations

Same steps! Just weirder answers.

7.
$$\frac{d}{r} = \frac{rD}{r}$$
 ior $t = \frac{d}{r}$

7.
$$\frac{d = r0 \text{ for } t}{r} \quad t = \frac{d}{r} \quad T \left(A \right) = \left(\frac{FV - OV}{P} \right)$$
9.
$$A = \frac{FV - OV}{T} \text{ for } OV$$

$$-FV \quad 1 - FV$$

9.
$$A = \frac{FV - OV}{T}$$
 for OV

20. Which is a possible way to rewrite the equation y = 3x + 3b to solve for b?

$$b = \frac{y - 3x}{3}$$

C.
$$b = \frac{y-3}{3x}$$

D.
$$b = x(y - 3)$$

Solving Word Problems

```
WISER! W > what is the question? What is my variable?

I -> information -> what do I know/need to know?

S -> set up (equation, neguality, etc)

E -> evaluate > do the math!

R -> Review! -> plug back in to check

R -> Review! -> make sure you answered the Q
                                                                                                                                                     24. Maggie's brother is 3 years younger than twice her age. The sum of their ages is 24. How old is Maggie?
                                                                                                                                                      W >> How old is maggie? maggie's age = X

I >> maggie = X

brother = 2x-3
                                                                                                                                             S \rightarrow X + (2x-3) = 24

E \rightarrow X + 2x - 3 = 24

+ 3 + 1 + 3

+ 3 + 1 + 3

+ 3 + 1 + 3

+ 3 + 1 + 3

+ 3 + 1 + 3

+ 3 + 1 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3

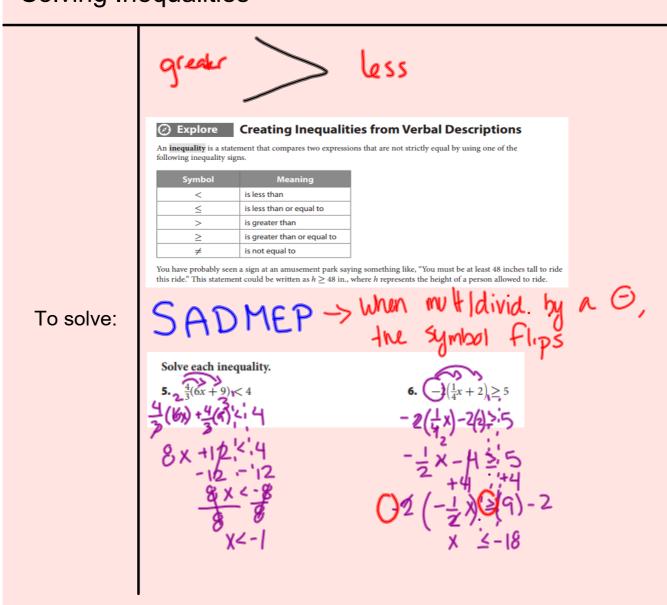
+ 4 + 1 + 3

+ 4 + 1 + 3

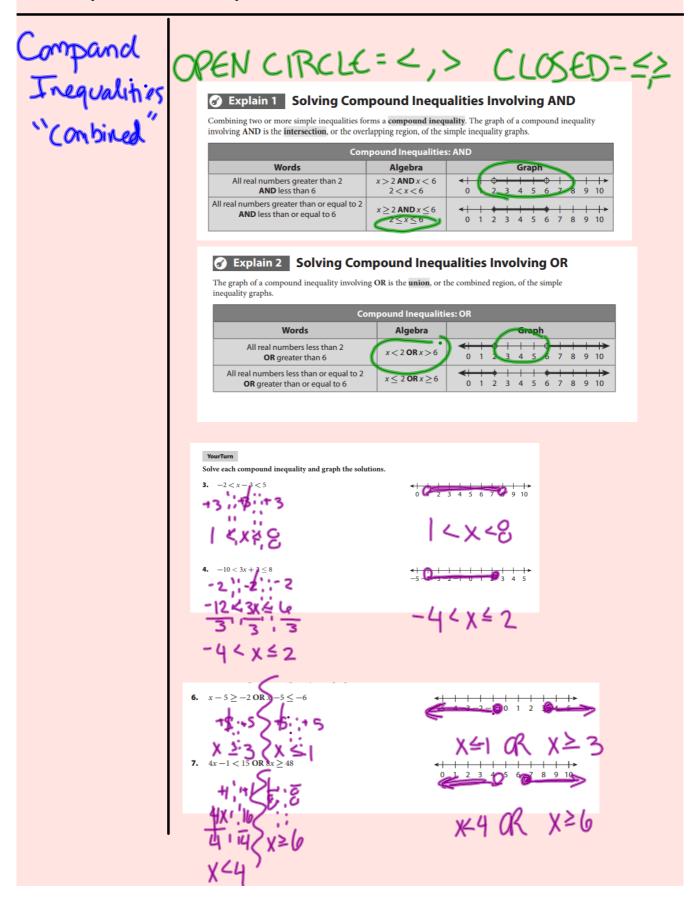
+ 4 + 1 + 3

+ 4 + 1 + 3

+ 4 + 1 + 3


+ 4 + 1 + 3

+ 4 + 1 + 3


+ 4 + 1 + 3

+ 4 + 1
```

Solving Inequalities

Compound Inequalities

